A Faster Pseudopolynomial Time Algorithm for Subset Sum

Konstantinos Koiliaris, Chao Xu
June 6, 2017

University of Illinois, Urbana-Champaign
The Subset Sum Problem

Input: A set S of n natural numbers $x_1, x_2, x_3, \ldots, x_n$ and a target number t.
The Subset Sum Problem

Input: A set S of n natural numbers $x_1, x_2, x_3, \ldots, x_n$ and a target number t.

Output: Is there a subset T of S such that $\sum_{x_i \in T} x_i = t$?
The Subset Sum Problem

Classic problem.
The Subset Sum Problem

Classic problem.

One of Karp’s original NP-hard problems.

[Karp ’72]
The Subset Sum Problem

Classic problem.

One of Karp’s original **NP-hard** problems.

Weakly NP-complete

[Karp ’72]
Classic problem.

One of Karp’s original NP-hard problems. [Karp ’72]

Weakly NP-complete

Textbook DP algorithm due to Bellman that runs in $O(nt)$ pseudopolynomial time. [Bellman ’56]
Faster pseudopolynomial time algorithm for subset sum implies faster polynomial time algorithms for various problems.
Applications

As a subroutine:

- knapsack
- scheduling
- graph problems with cardinality constraints

In practice:

- power indices (Voting Theory)
- set-based queries (Database)
- Subset sum based keys (Security)
Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: $O(nt)$ — [Bellman ’56]
• Original DP solution: $O(nt)$ — [Bellman ’56]
• Fast for small max S: $O(n \max S)$ — [Pisinger ’91]
Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: $O(nt)$ — [Bellman ’56]
- Fast for small $\max S$: $O(n \max S)$ — [Pisinger ’91]
- Fast for small σ: $O(\sigma^{3/2})$ — [Klinz et al. ’99]
Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: $O(nt)$ — [Bellman '56]
- Fast for small max S: $O(n \max S)$ — [Pisinger '91]
- Fast for small σ: $O(\sigma^{3/2})$ — [Klinz et al. '99]
- Data structure: $\tilde{O}(n \max S)$ — [Eppstein '97, Serang '14, '15]
Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: $O(nt)$ — [Bellman ’56]
- Fast for small max S: $O(n\ max\ S)$ — [Pisinger ’91]
- Fast for small σ: $O(\sigma^{3/2})$ — [Klinz et al. ’99]
- Data structure: $\tilde{O}(n\ max\ S)$ — [Eppstein ’97, Serang ’14, ’15]
- RAM Model implementation of Bellman: $O(nt/\ log\ t)$ — [Pisinger ’03]
Previous Work: Deterministic pseudopolynomial algorithms

- Original DP solution: $O(nt)$ — [Bellman ’56]
- Fast for small max S: $O(n \max S)$ — [Pisinger ’91]
- Fast for small σ: $O(\sigma^{3/2})$ — [Klinz et al. ’99]
- Data structure: $\tilde{O}(n \max S)$ — [Eppstein ’97, Serang ’14, ’15]
- RAM Model implementation of Bellman: $O(nt/\log t)$ — [Pisinger ’03]
- First poly space algorithm: $\tilde{O}(n^3t)$ — [Lokshtanov et al. ’10]
Main Theorem [Koiliaris & Xu ‘17]. The subset sum problem can be decided in $\tilde{O}(\min\{\sqrt{nt}, t^{4/3}\})$ time.
Main Theorem [Koiliaris & Xu ‘17]. The subset sum problem can be decided in $\tilde{O}(\min\{\sqrt{nt}, t^{4/3}\})$ time.

Fastest deterministic pseudopolynomial time algorithm for the problem.
Main Theorem [Koiliaris & Xu ‘17]. The subset sum problem can be decided in $\tilde{O}(\min\{\sqrt{nt}, t^{4/3}\})$ time.

Fastest deterministic pseudopolynomial time algorithm for the problem.

Concurrent to our work, Bringmann showed that if randomization is allowed the subset sum problem can be decided in $\tilde{O}(t)$, with one-sided error probability $1/n$.

[Bringmann ‘17]
Main Theorem [Koiliaris & Xu ‘17]. *The subset sum problem can be decided in $\tilde{O}(\min\{\sqrt{nt}, t^{4/3}\})$ time.*

Fastest **deterministic** pseudopolynomial time algorithm for the problem.

Concurrent to our work, Bringmann showed that if *randomization* is allowed the subset sum problem can be decided in $\tilde{O}(t)$, with one-sided error probability $1/n$. [Bringmann ‘17]

Conditional lower bound: Subset sum solvable in $O(poly(n)t^{1-\epsilon})$ for any $\epsilon > 0$ implies faster algorithms for a wide variety of problems including set cover. [Bringmann ‘17]
Input: A set $S \subseteq \mathbb{Z}_m$ of n numbers a target $t \in \mathbb{Z}_m$.

Output: Is there a subset T of S such that $\sum_{x \in T} x = t$?
Variants: Addition in \mathbb{Z}_m

Input: A set $S \subseteq \mathbb{Z}_m$ of n numbers a target $t \in \mathbb{Z}_m$.

Output: Is there a subset T of S such that $\sum_{x \in T} x = t$?

Solvable in $O(nm)$ time using Bellman’s DP.
Input: A set $S \subseteq \mathbb{Z}_m$ of n numbers a target $t \in \mathbb{Z}_m$.

Output: Is there a subset T of S such that $\sum_{x \in T} x = t$?

Solvable in $O(nm)$ time using Bellman’s DP.

Theorem ([Koiliaris & Xu ‘17])

The subset sum problem in \mathbb{Z}_m can be decided in $\tilde{O}(\min\{\sqrt{nm}, m^{5/4}\})$ time.
Variants: Addition in \(\mathbb{Z}_m \)

Input: A set \(S \subseteq \mathbb{Z}_m \) of \(n \) numbers and a target \(t \in \mathbb{Z}_m \).

Output: Is there a subset \(T \) of \(S \) such that \(\sum_{x \in T} x = t \)?

Solvable in \(O(nm) \) time using Bellman’s DP.

Theorem ([Koiliaris & Xu ‘17])

The subset sum problem in \(\mathbb{Z}_m \) can be decided in \(\tilde{O}(\min\{\sqrt{nm}, m^{5/4}\}) \) time.

Different from the algorithm in \(\mathbb{N} \)!
Variants: multiset

Input: 2n natural numbers $x_1, x_2, x_3, \ldots, x_n, b_1, \ldots, b_n$ and a target number t.

Output: Does there exist non-negative integers c_1, \ldots, c_n, such that $\sum_{i=1}^{n} c_i x_i = t$ and $c_i \leq b_i$?
Input: 2n natural numbers $x_1, x_2, x_3, \ldots, x_n, b_1, \ldots, b_n$ and a target number t.

Output: Does there exist non-negative integers c_1, \ldots, c_n, such that $\sum_{i=1}^{n} c_i x_i = t$ and $c_i \leq b_i$?

- Solvable in $O(nt)$ time directly. [Faaland ‘73]
Variants: multiset

Input: 2n natural numbers \(x_1, x_2, x_3, \ldots, x_n, b_1, \ldots, b_n \) and a target number \(t \).

Output: Does there exist non-negative integers \(c_1, \ldots, c_n \), such that \(\sum_{i=1}^{n} c_i x_i = t \) and \(c_i \leq b_i \)?

- Solvable in \(O(nt) \) time directly. [Faaland '73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler '79]
Input: 2n natural numbers $x_1, x_2, x_3, \ldots, x_n, b_1, \ldots, b_n$ and a target number t.

Output: Does there exist non-negative integers c_1, \ldots, c_n, such that $\sum_{i=1}^{n} c_i x_i = t$ and $c_i \leq b_i$?

- Solvable in $O(nt)$ time directly. [Faaland ‘73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler ‘79]
- If all $b_i = \infty$, then it’s the coin change problem.
Variants: multiset

Input: 2n natural numbers $x_1, x_2, x_3, \ldots, x_n, b_1, \ldots, b_n$ and a target number t.

Output: Does there exist non-negative integers c_1, \ldots, c_n, such that $\sum_{i=1}^{n} c_i x_i = t$ and $c_i \leq b_i$?

• Solvable in $O(nt)$ time directly. [Faaland ‘73]
• Reduces to subset sum with polylog factor blowup in near linear time. [Lawler ‘79]
• If all $b_i = \infty$, then it’s the coin change problem.
 • $O(nx_1)$ time [Böcker and Lipták ‘07]
Input: 2n natural numbers $x_1, x_2, x_3, \ldots, x_n, b_1, \ldots, b_n$ and a target number t.

Output: Does there exist non-negative integers c_1, \ldots, c_n, such that $\sum_{i=1}^{n} c_i x_i = t$ and $c_i \leq b_i$?

- Solvable in $O(nt)$ time directly. [Faaland '73]
- Reduces to subset sum with polylog factor blowup in near linear time. [Lawler '79]
- If all $b_i = \infty$, then it’s the coin change problem.
 - $O(nx)$ time [Böcker and Lipták ‘07]
 - $\tilde{O}(t)$ time. [Bringmann '17]
Input: A set S of n natural numbers $x_1, x_2, x_3, \ldots, x_n$, cardinality constraint k and target number t.

Output: Does there exist a subset of S of size k that sums to t?

• Solvable in $O(knt)$ time by modifying Bellman’s DP.
Input: A set S of n natural numbers $x_1, x_2, x_3, \ldots, x_n$, cardinality constraint k and target number t.

Output: Does there exists a subset of S of size k that sums to t?

- Solvable in $O(knt)$ time by modifying Bellman’s DP.
- We can solve it in $\tilde{O}(nt)$ time.
Variants: Return a solution

- Instead of the decision problem, what if we want the actual set that realizes the target?
Variants: Return a solution

• Instead of the decision problem, what if we want the actual set that realizes the target?
• Our algorithm handles it with polylog factor slow down.
Variants: Return a solution

- Instead of the decision problem, what if we want the actual set that realizes the target?
- Our algorithm handles it with polylog factor slow down.
- We can also count the number of solutions faster than the standard dynamic programming algorithm.
We present two algorithms:

- Solve subset sum in \mathbb{N}.
- Solve subset sum in \mathbb{Z}_m.
Subset sums in \mathbb{N}
To solve the subset sum problem, we will consider the following **all subset sums** problem:
To solve the subset sum problem, we will consider the following all subset sums problem:

*Given a set S of n natural numbers and an (upper bound) u, compute all the realizable sums up to u.***
Notations

• \([x..y]\) = \{x, x + 1, \ldots, y\} is the set of integers in the interval \([x, y]\).
• \([x..y]\) = \{x, x + 1, \ldots, y\}\) is the set of integers in the interval \([x, y]\).
• \([u]\) = \([0..u]\).
• $[x..y] = \{x, x+1, \ldots, y\}$ is the set of integers in the interval $[x, y]$.
• $[u] = [0..u]$.
• For two sets X and Y, $X \oplus Y = \{x + y \mid x \in X \text{ and } y \in Y\}$.
Notations

• \([x..y] = \{x, x + 1, \ldots, y\}\) is the set of integers in the interval \([x, y]\).
• \([u] = [0..u]\).
• For two sets \(X\) and \(Y\), \(X \oplus Y = \{x + y \mid x \in X \text{ and } y \in Y\}\).
• The set of all subset sums of \(S\) is denoted by

\[
\Sigma(S) = \left\{ \sum_{t \in T} t \middle| T \subseteq S \right\}.
\]
Notations

- \([x..y] = \{x, x + 1, \ldots, y\}\) is the set of integers in the interval \([x, y]\).
- \([u] = [0..u]\).
- For two sets \(X\) and \(Y\), \(X \oplus Y = \{x + y \mid x \in X \text{ and } y \in Y\}\).
- The set of all subset sums of \(S\) is denoted by

\[
\Sigma(S) = \left\{ \sum_{t \in T} t \mid T \subseteq S \right\}.
\]

Finding all subset sums of \(S\) up to \(u\): compute \(\Sigma(S) \cap [u]\).
Fact. If P and Q form a partition of a set S, then $\sum(P) \oplus \sum(Q) = \sum(S)$.

Straightforward **divide-and-conquer** algorithm for the all subset sums problem:
Fact. If P and Q form a partition of a set S, then $\Sigma(P) \oplus \Sigma(Q) = \Sigma(S)$.

Straightforward divide-and-conquer algorithm for the all subset sums problem:

- Partition the set S into two sets
Fact. If P and Q form a partition of a set S, then $\Sigma(P) \oplus \Sigma(Q) = \Sigma(S)$.

Straightforward **divide-and-conquer** algorithm for the all subset sums problem:

- Partition the set S into two sets
- Recursively compute their subset sums
Fact. If P and Q form a partition of a set S, then $\Sigma(P) \oplus \Sigma(Q) = \Sigma(S)$.

Straightforward divide-and-conquer algorithm for the all subset sums problem:

- Partition the set S into two sets
- Recursively compute their subset sums
- Combine them together with \oplus.
Review of the Bellman’s dynamic programming algorithm

Input: A set S of n natural numbers $x_1, x_2, x_3, \ldots, x_n$ and an upper bound u.

Algorithm:

- $T_0 \leftarrow \{0\}$.
- $T_i \leftarrow T_{i-1} \cup \{s + x_i | s \in T_{i-1}, s + x_i \leq u\}$.

$O(nu)$ time.
Input: A set S of n natural numbers $x_1, x_2, x_3, \ldots, x_n$ and an upper bound u.

Algorithm:

\begin{itemize}
 \item return $[u] \cap \bigoplus_{i=1}^{n} \sum(\{x_i\})$.
\end{itemize}

$\sum(\{x\}) = \{0, x\}$.
Theorem. Given $A, B \subseteq [u]$, $A \oplus B$ can be computed in $O(u \log u) = \tilde{O}(u)$ time.

Just use FFT
Theorem. Given $A, B \subseteq [u]$, $A \oplus B$ can be computed in $O(u \log u) = \tilde{O}(u)$ time.

Just use FFT

Theorem. Given $A, B \subseteq [u] \times [v]$, $A \oplus B$ can be computed in $O(uv \log uv) = \tilde{O}(uv)$ time.
If $S \subseteq [x..x+\ell]$, then we will show that $\Sigma(S) \cap [u]$ can be found in

- $O(n(x + \ell))$ time. (Algorithm 1)
- $O((u/x)^2\ell)$ time. (Algorithm 2)
Two algorithms for all subset sums

If $S \subseteq [x..x + \ell]$, then we will show that $\sum(S) \cap [u]$ can be found in

- $O(n(x + \ell))$ time. (Algorithm 1)
- $O((u/x)^2\ell)$ time. (Algorithm 2)

We balance the running time of both algorithms to get the desired result.
Algorithm 1
Lemma Given a set S of n numbers in $[x..x + \ell]$, one can compute the set of all subset sums $\Sigma(S)$ in $\tilde{O}(n(x + \ell))$ time.
Lemma Given a set S of n numbers in $[x..x + \ell]$, one can compute the set of all subset sums $\Sigma(S)$ in $\tilde{O}(n(x + \ell))$ time.

Proof Sketch.
Lemma Given a set S of n numbers in $[x..x + \ell]$, one can compute the set of all subset sums $\Sigma(S)$ in $\tilde{O}(n(x + \ell))$ time.

Proof Sketch.

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\Sigma(L)$ and $\Sigma(R)$.
Lemma Given a set S of n numbers in $[x..x + \ell]$, one can compute the set of all subset sums $\Sigma(S)$ in $\tilde{O}(n(x + \ell))$ time.

Proof Sketch.

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\Sigma(L)$ and $\Sigma(R)$.
- The sets $\Sigma(L)$, $\Sigma(R) \subseteq [n(x + \ell)]$. $\Sigma(L) \oplus \Sigma(R)$ in $\tilde{O}(n(x + \ell))$ time.
Lemma Given a set S of n numbers in $[x..x + \ell]$, one can compute the set of all subset sums $\Sigma(S)$ in $\tilde{O}(n(x + \ell))$ time.

Proof Sketch.

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\Sigma(L)$ and $\Sigma(R)$.
- The sets $\Sigma(L), \Sigma(R) \subseteq [n(x + \ell)]$. $\Sigma(L) \oplus \Sigma(R)$ in $\tilde{O}(n(x + \ell))$ time.
-
 $$T(n) = 2T(n/2) + \tilde{O}(n(x + \ell))$$
Lemma Given a set S of n numbers in $[x..x + \ell]$, one can compute the set of all subset sums $\Sigma(S)$ in $\tilde{O}(n(x + \ell))$ time.

Proof Sketch.

- Partition S into two sets L, R of (roughly) equal cardinality, and compute recursively $\Sigma(L)$ and $\Sigma(R)$.
- The sets $\Sigma(L), \Sigma(R) \subseteq [n(x + \ell)]$. $\Sigma(L) \oplus \Sigma(R)$ in $\tilde{O}(n(x + \ell))$ time.

$$T(n) = 2T(n/2) + \tilde{O}(n(x + \ell))$$

- Solves to $T(n) = \tilde{O}(n(x + \ell))$
Algorithm 2
Lemma. Given a set $S \subseteq [x..x + \ell]$ of size n, computing the set $\Sigma(S) \cap [u]$ takes $\tilde{O}((u/x)^2 \ell)$ time.
Algorithm 2: Idea

Lemma. Given a set $S \subseteq [x..x + \ell]$ of size n, computing the set $\Sigma(S) \cap [u]$ takes $\tilde{O}((u/x)^2 \ell)$ time.

Main idea If elements in $\Sigma(S)$ are larger than u, we can throw it away.
Lemma. Given a set $S \subseteq [x..x + \ell]$ of size n, computing the set $\Sigma(S) \cap [u]$ takes $\tilde{O} \left(\left(\frac{u}{x} \right)^2 \ell \right)$ time.

Main idea If elements in $\Sigma(S)$ are larger than u, we can throw it away. Sum of any $\left\lfloor \frac{u}{x} \right\rfloor + 1$ elements is greater than u, then we only need subset sums using size $\left\lfloor \frac{u}{x} \right\rfloor$ subsets.
Lemma. Given a set $S \subseteq [x..x + \ell]$ of size n, computing the set $\Sigma(S) \cap [u]$ takes $\tilde{O}((u/x)^2 \ell)$ time.

Main idea If elements in $\Sigma(S)$ are larger than u, we can throw it away. Sum of any $\lceil \frac{u}{x} \rceil + 1$ elements is greater than u, then we only need subset sums using size $\lfloor \frac{u}{x} \rfloor$ subsets.

Proof Sketch. Same algorithm:

1. Partition S into L and R
2. Compute $\Sigma(L) \cap [u]$ and $\Sigma(R) \cap [u]$ recursively
3. Combine through (a smarter implementation of) \oplus.
Algorithm 2: A single recursive step
Algorithm 2: A single recursive step
Algorithm 2: A single recursive step

\[(\Sigma(L) \cap [u]) \oplus (\Sigma(R) \cap [u])\]
Algorithm 2: A single recursive step

* $z \in \Sigma(L) \cap [u]$.
Algorithm 2: A single recursive step

- $z \in \Sigma(L) \cap [u]$.
- For some $L' \subseteq L$, $z = \sum_{s \in L'} s = \sum_{x+t \in L'} x + t$, $t \in [\ell]$.
Algorithm 2: A single recursive step

• $z \in \Sigma(L) \cap [u]$.
• For some $L' \subseteq L$, $z = \sum_{s \in L'} s = \sum_{x + t \in L'} x + t$, $t \in [\ell]$.
• $|L'| \leq \lfloor u/x \rfloor = k$.
Algorithm 2: A single recursive step

- \(z \in \Sigma(L) \cap [u] \).
- For some \(L' \subseteq L \), \(z = \sum_{s \in L'} s = \sum_{x+t \in L'} x + t \), \(t \in [\ell] \).
- \(|L'| \leq \lfloor u/x \rfloor = k \).
- \(z = ix + j \), where \(i \in [k] \), \(j \in [\ell k] \).
Algorithm 2: A single recursive step

\[i \in [k], j \in [\ell k] \]
\[z = ix + j \]
\[k = \left\lfloor \frac{u}{x} \right\rfloor \]
\[\cap \]
\[\Sigma(L) \cap [u] \]
\[\Sigma(R) \cap [u] \]
Algorithm 2: A single recursive step

$$i \in [k], j \in [\ell k]$$

$$z = ix + j$$

Lift to 2D

$$k = \left\lfloor \frac{u}{x} \right\rfloor$$

$$\Phi$$

$$\bigcap$$

$$\Sigma(L) \cap [u]$$

$$\Sigma(R) \cap [u]$$

$$(i, j)$$
Algorithm 2: A single recursive step

Lift to 2D

\[i \in [k], \ j \in [\ell k] \]
\[z = ix + j \]
\[k = \left\lfloor \frac{u}{x} \right\rfloor \]
\[\Phi(\Sigma(L) \cap [u]) \]
\[\Phi(\Sigma(R) \cap [u]) \]
\[A = \Phi(\Sigma(L) \cap [u]) \]
\[B = \Phi(\Sigma(R) \cap [u]) \]
\[A, B \subseteq [k] \times [\ell k] \]
Algorithm 2: A single recursive step

\[i \in [k], j \in [\ell k] \]
\[z = ix + j \]
\[k = \left\lfloor \frac{u}{x} \right\rfloor \]
\[\Phi^{-1} \]

\[\cap \]
\[\Sigma(L) \cap [u] \]
\[\Sigma(R) \cap [u] \]
\[\Phi \]

\[A = \Phi(\Sigma(L) \cap [u]) \]
\[B = \Phi(\Sigma(R) \cap [u]) \]
\[A, B \subseteq [k] \times [\ell k] \]

\[\Sigma(L) \oplus \Sigma(R) \cap [u] \]
\[\Phi \]

\[A \oplus B \]
\[\tilde{O}(\ell k^2) = \tilde{O}((u/x)^2 \ell) \text{ time} \]
Let $T(n, \ell)$ be the running time of Algorithm 2 with input set $S \subseteq [x..x+\ell]$ of size n.
Let $T(n, \ell)$ be the running time of Algorithm 2 with input set $S \subseteq [x..x + \ell]$ of size n.

\[\ell_1 + \ell_2 = \ell. \]

\[
T(n, \ell) = T(n/2, \ell_1) + T(n/2, \ell_2) + \tilde{O}(\ell(u/x)^2) \\
= \tilde{O}(\ell(u/x)^2)
\]
Algorithm 3
Algorithm

Algorithm 3

AllSubsetSum3(S, u):

- Partition [u] into intervals \(l_i = [r_{i-1}..r_i - 1] \) for \(0 \leq i \leq k \).
- Let \(S_i \leftarrow l_i \cap S \).
- Compute \(\Sigma(S_0) \) using Algorithm 1.
- Compute \(\Sigma(S_i) \) using Algorithm 2 for \(1 \leq i \leq k \).
- Return \(\bigoplus_{i=0}^{k} \Sigma(S_i) \).
Algorithm 3

\[r_i = \lfloor 2^i r_0 \rfloor \]
\[k = O(\log u) \]
\[S_i = S \cap [r_{i-1}..r_i - 1] \]
\[n_i = |S_i| \]

\[r_0 \quad r_1 \quad r_2 \quad \ldots \quad r_{k-1} \quad r_k = u \]
Algorithm 3

\[\sum(S_0) \]

Find \(\sum(S_0) \)

Algorithm 1 \(\tilde{O}(n_0r_0) \)

\[r_k = u \]
Algorithm 3

Find $\sum(S_i)$

Algorithm 2

$\tilde{O}\left(\left(\frac{u}{r_{i-1}}\right)^2 (r_i - r_{i-1})\right) = \tilde{O}\left(\frac{u^2}{r_{i-1}}\right)$
Find $\Sigma(S_i)$ for all $1 \leq i \leq k$

$$\sum_{i=1}^{k} \tilde{O}\left(\frac{u^2}{r_{i-1}}\right) = \tilde{O}\left(\frac{u^2}{r_0}\right)$$
Algorithm 3: Analysis

- Find $\Sigma(S_0)$ in $\tilde{O}(n_0r_0) = \tilde{O}(\min(n, r_0)r_0)$ time.
Algorithm 3: Analysis

- Find $\Sigma(S_0)$ in $\tilde{O}(n_0 r_0) = \tilde{O}(\min(n, r_0)r_0)$ time.
- Find $\Sigma(S_1), \ldots, \Sigma(S_k)$ in $\tilde{O}(u^2/r_0)$ time.
Algorithm 3: Analysis

- Find $\Sigma(S_0)$ in $\tilde{O}(n_0r_0) = \tilde{O}(\min(n, r_0)r_0)$ time.
- Find $\Sigma(S_1), \ldots, \Sigma(S_k)$ in $\tilde{O}(u^2/r_0)$ time.
- Find $\bigoplus_{i=0}^{k} \Sigma(S_i)$ in $\tilde{O}(ku) = \tilde{O}(u)$ time.
Algorithm 3: Analysis

- Find $\Sigma(S_0)$ in $\tilde{O}(n_0 r_0) = \tilde{O}(\min(n, r_0)r_0)$ time.
- Find $\Sigma(S_1), \ldots, \Sigma(S_k)$ in $\tilde{O}(u^2/r_0)$ time.
- Find $\bigoplus_{i=0}^k \Sigma(S_i)$ in $\tilde{O}(ku) = \tilde{O}(u)$ time.
- Total running time $\tilde{O}(u^2/r_0 + \min(n, r_0)r_0 + u)$.
Algorithm 3: Analysis

- Find $\Sigma(S_0)$ in $\tilde{O}(n_0 r_0) = \tilde{O}(\min(n, r_0) r_0)$ time.
- Find $\Sigma(S_1), \ldots, \Sigma(S_k)$ in $\tilde{O}(u^2 / r_0)$ time.
- Find $\bigoplus_{i=0}^k \Sigma(S_i)$ in $\tilde{O}(k u) = \tilde{O}(u)$ time.
- Total running time $\tilde{O}(u^2 / r_0 + \min(n, r_0) r_0 + u)$.

- Set $r_0 = u / \sqrt{n}$, we get $\tilde{O}(\sqrt{n} u)$.
- Set $r_0 = u^{2/3}$, we get $\tilde{O}(u^{4/3})$.
There exist inputs $x_1 < \ldots < x_n$, such that any divide-and-conquer algorithm that computes $\Sigma(S)$ by

- add parenthesis to this expression

$$\Sigma(x_1) \oplus \ldots \oplus \Sigma(x_n),$$

- compute all the intermediate output,

takes $\Omega(\min(\sqrt{nt}, t^{4/3}))$ time.
Subset sums in \mathbb{Z}_m
Overview of the result

\[\mathbb{Z}_m = \{0, \ldots, m - 1\}, \text{ the integers modulo } m. \]
\(\mathbb{Z}_m = \{0, \ldots, m - 1\} \), the integers modulo \(m \).

Theorem

Let \(S \subseteq \mathbb{Z}_m \) be a set of size \(n \). \(\Sigma(S) \) can be found in \(\tilde{O}(\min(\sqrt{nm}, m^{5/4})) \) time.
Overview of the result

\[\mathbb{Z}_m = \{0, \ldots, m - 1\}, \text{ the integers modulo } m. \]

Theorem

Let \(S \subseteq \mathbb{Z}_m \) be a set of size \(n \). \(\Sigma(S) \) can be found in
\[\tilde{O}(\min(\sqrt{nm}, m^{5/4})) \] time.

Not an adaptation of Algorithm 3.
• Algorithm 3 throws away sums that fall outside \([u]\).
The challenge

- Algorithm 3 throws away sums that fall outside $[u]$.
- All operations in \mathbb{Z}_m stays in \mathbb{Z}_m.
$\mathbb{Z}_m^* = \{x | x \in \mathbb{Z}_m, \gcd(x, m) = 1\}$, the set of units of \mathbb{Z}_m.
\[\mathbb{Z}_m^* = \{ x | x \in \mathbb{Z}_m, \gcd(x, m) = 1 \} \]

the set of units of \(\mathbb{Z}_m \).

Assume \(\ell \) is large enough \((\Omega(m^{\frac{1}{\log \log m}})) \) in the remainder of the talk.
\[\mathbb{Z}_m^* = \{x | x \in \mathbb{Z}_m, \gcd(x, m) = 1\} \], the set of units of \(\mathbb{Z}_m \).

Assume \(\ell \) is large enough (\(\Omega(m^{\frac{1}{\log \log m}}) \)) in the remainder of the talk.

The algorithm consists of a black box for solving subset sums when \(S \subseteq \mathbb{Z}_m^* \), and then apply divide and conquer depending on the divisibility of the elements in \(S \).
Subset sums in \mathbb{Z}_m

$S \subseteq \mathbb{Z}_m^*$
A segment of length ℓ is a set of the form $x[\ell] = \{0, x, 2x, \ldots, \ell x\}$. We denote $X[\ell] = \{ix | x \in X, i \in [\ell]\}$.
A segment of length ℓ is a set of the form $x[\ell] = \{0, x, 2x, \ldots, \ell x\}$. We denote $X[\ell] = \{ix| x \in X, i \in [\ell]\}$.

$\Sigma(S)$ can be found quickly if S is covered by a segment.

Theorem

$S \subseteq \mathbb{Z}_m$ is a n element subset of $x[\ell]$, then $\Sigma(S)$ can be found in $\tilde{O}(n\ell)$ time.
The algorithm when input is in \mathbb{Z}_m^*

\[\ell = 3 \quad X = \{1, 2, 5\} \]

We partition the input by segments.

- Find X, such that $S \subseteq X[\ell]$.

The algorithm when input is in \mathbb{Z}_m^*

We partition the input by segments.

- Find X, such that $S \subseteq X[\ell]$.
- Create a partition $\{S_x | x \in X\}$ of S, such that $S_x \subseteq x[\ell]$.
The algorithm when input is in \mathbb{Z}_m^*

\[\ell = 3 \quad X = \{1, 2, 5\} \]

We partition the input by segments.

- Find X, such that $S \subseteq X[\ell]$.
- Create a partition $\{S_x | x \in X\}$ of S, such that $S_x \subseteq x[\ell]$.
- return $\bigoplus_{x \in X} \Sigma(S_x)$.
The algorithm when input is in \mathbb{Z}_m^*

The running time:

• The time for finding X, say $T_{n,m}$
• Find subset sums for S_x takes $O(S_x)$. The total time over all S_x is $O(n)$.
• S_x takes $O(X_m)$ time.

The total running time is $O(T_{n,m} + X_m)$. We need to find a small X that induces a cover of S, and we have to find one fast.
The algorithm when input is in \mathbb{Z}_m^*

The running time:

- The time for finding X, say $T(n, \ell, m)$
The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\Sigma(S_x)$ takes $\tilde{O}(|S_x|\ell)$.
The algorithm when input is in \mathbb{Z}_m^*

The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\Sigma(S_x)$ takes $\tilde{O}(|S_x|\ell)$. The total time over all S_x is $\sum_{x \in X} \tilde{O}(|S_x|\ell) = \tilde{O}(n\ell)$.

The algorithm when input is in \mathbb{Z}_m^*

The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\Sigma(S_x)$ takes $\tilde{O}(|S_x|\ell)$. The total time over all S_x is $\sum_{x \in X} \tilde{O}(|S_x|\ell) = \tilde{O}(n\ell)$.
- $\bigoplus_{x \in X} \Sigma(S_x)$ takes $\tilde{O}(|X|m)$ time.

The total running time is $\tilde{O}(T(n, \ell, m) + n\ell + |X|m)$.
The running time:

- The time for finding X, say $T(n, \ell, m)$
- Find subset sums for $\Sigma(S_x)$ takes $\tilde{O}(|S_x|\ell)$. The total time over all S_x is $\sum_{x \in X} \tilde{O}(|S_x|\ell) = \tilde{O}(n\ell)$.
- $\bigoplus_{x \in X} \Sigma(S_x)$ takes $\tilde{O}(|X|m)$ time.

The total running time is $\tilde{O}(T(n, \ell, m) + n\ell + |X|m)$. We need to find a small X that induces a cover of S, and we have to find one fast.
Theorem

For any $S \subseteq \mathbb{Z}_m^*$, there exists an $x \in \mathbb{Z}_m^*$, such that $|S \cap x[\ell]| = \Omega(\frac{\ell}{m}|S|)$.
Theorem

For any $S \subseteq \mathbb{Z}_m^*$, there exists a $x \in \mathbb{Z}_m^*$, such that $|S \cap x[\ell]| = \Omega(\frac{\ell}{m} |S|)$.

- $b \in x[\ell]$ if there exists $a \in [\ell]$ such that $ax \equiv b \pmod{m}$.
Covering $S \subseteq \mathbb{Z}_m^*$ by segments

Theorem

For any $S \subseteq \mathbb{Z}_m^*$, there exists $a x \in \mathbb{Z}_m^*$, such that $|S \cap x[\ell]| = \Omega\left(\frac{\ell}{m} |S|\right)$.

- $b \in x[\ell]$ if there exists $a \in [\ell]$ such that $ax \equiv b \pmod{m}$.
- $ax \equiv b \pmod{m}$ has exactly one solution if $a, b \in \mathbb{Z}_m^*$.
Covering $S \subseteq \mathbb{Z}_m^*$ by segments

Theorem

For any $S \subseteq \mathbb{Z}_m^*$, there exists a $x \in \mathbb{Z}_m^*$, such that $|S \cap x[\ell]| = \Omega\left(\frac{\ell}{m} |S|\right)$.

- $b \in x[\ell]$ if there exists $a \in [\ell]$ such that $ax \equiv b \pmod{m}$.
- $ax \equiv b \pmod{m}$ has exactly one solution if $a, b \in \mathbb{Z}_m^*$.
- Each $b \in \mathbb{Z}_m^*$ is covered by $[\ell] \cap \mathbb{Z}_m^*$ segments: For each $a \in [\ell] \cap \mathbb{Z}_m^*$, there is a unique x such that $b \in x[\ell]$.
Covering $S \subseteq \mathbb{Z}_m^*$ by segments

Theorem

For any $S \subseteq \mathbb{Z}_m^*$, there exists a $x \in \mathbb{Z}_m^*$, such that $|S \cap x[\ell]| = \Omega\left(\frac{\ell}{m}|S|\right)$.

- $b \in x[\ell]$ if there exists $a \in [\ell]$ such that $ax \equiv b \pmod{m}$.
- $ax \equiv b \pmod{m}$ has exactly one solution if $a, b \in \mathbb{Z}_m^*$.
- Each $b \in \mathbb{Z}_m^*$ is covered by $[\ell] \cap \mathbb{Z}_m^*$ segments: For each $a \in [\ell] \cap \mathbb{Z}_m^*$, there is a unique x such that $b \in x[\ell]$.

$$\mathbb{E}_{\text{uniform } x \in \mathbb{Z}_m^*} [b \text{ covered by } x[\ell]] = \frac{|[\ell] \cap \mathbb{Z}_m^*|}{|\mathbb{Z}_m^*|} = \Omega\left(\frac{\ell}{m}\right)$$
Covering $S \subseteq \mathbb{Z}_m^*$ by segments

Theorem

For any $S \subseteq \mathbb{Z}_m^*$, there exists a $x \in \mathbb{Z}_m^*$, such that $|S \cap x[\ell]| = \Omega\left(\frac{\ell}{m} |S|\right)$.

- $b \in x[\ell]$ if there exists $a \in [\ell]$ such that $ax \equiv b \pmod{m}$.
- $ax \equiv b \pmod{m}$ has exactly one solution if $a, b \in \mathbb{Z}_m^*$.
- Each $b \in \mathbb{Z}_m^*$ is covered by $[\ell] \cap \mathbb{Z}_m^*$ segments: For each $a \in [\ell] \cap \mathbb{Z}_m^*$, there is a unique x such that $b \in x[\ell]$.

$$\mathbb{E}_{\text{uniform } x \in \mathbb{Z}_m^*}[b \text{ covered by } x[\ell]] = \frac{|[\ell] \cap \mathbb{Z}_m^*|}{|\mathbb{Z}_m^*|} = \Omega\left(\frac{\ell}{m}\right)$$

- For any subset $S \subseteq \mathbb{Z}_m^*$, there is a $x[\ell]$ that covers $|S| \frac{\ell}{m}$ elements in S in expectation.
Algorithm

\textsc{GreedySetCover}(S \subseteq \mathbb{Z}_m^*)

1. Pick \(x[\ell]\) such that \(|x[\ell] \cap S|\) is maximized.
2. \(S \leftarrow S \setminus x[\ell]\)
3. \textsc{GreedySetCover}(S)

Finds a cover of size \(O\left(\frac{m}{\ell} \log n\right)\) in \(O(n\ell)\) time.
Theorem

All subset sums with input $S \subseteq \mathbb{Z}_m^*$ can be solved in $\tilde{O}(\sqrt{nm})$ time.

Proof.

$$\tilde{O}(T(n, \ell, m) + n\ell + (\frac{m}{\ell})m) = \tilde{O}(\frac{m^2}{\ell} + n\ell)$$

Let $\ell = \frac{m}{\sqrt{n}}$. \qed
Theorem

All subset sums with input \(S \subseteq \mathbb{Z}_m^* \) can be solved in \(\tilde{O}(\sqrt{nm}) \) time.

Proof.

\[
\tilde{O}(T(n, \ell, m) + n\ell + (\frac{m}{\ell})m) = \tilde{O}(\frac{m^2}{\ell} + n\ell)
\]

Let \(\ell = \frac{m}{\sqrt{n}} \).

We can assume \(n = O(\sqrt{m}) \).
Theorem

All subset sums with input $S \subseteq \mathbb{Z}_m^*$ can be solved in $\tilde{O}(\sqrt{nm})$ time.

Proof.

$$\tilde{O}(T(n, \ell, m) + n\ell + (\frac{m}{\ell})m) = \tilde{O}(\frac{m^2}{\ell} + n\ell)$$

Let $\ell = \frac{m}{\sqrt{n}}$. \hfill \square

We can assume $n = O(\sqrt{m})$.

Theorem ([Hamidoune, Llad & Serra 08])

If $S \subseteq \mathbb{Z}_m^*$ and $|S| \geq 2\sqrt{m}$, then $\Sigma(S) = \mathbb{Z}_m$.
Theorem

All subset sums with input \(S \subseteq \mathbb{Z}_m^* \) can be solved in \(\tilde{O}(\sqrt{nm}) \) time.

Proof.

\[
\tilde{O}(T(n, \ell, m) + n\ell + (\frac{m}{\ell})m) = \tilde{O}(\frac{m^2}{\ell} + n\ell)
\]

Let \(\ell = \frac{m}{\sqrt{n}} \).

We can assume \(n = O(\sqrt{m}) \).

Theorem ([Hamidoune, Llad & Serra 08])

If \(S \subseteq \mathbb{Z}_m^* \) and \(|S| \geq 2\sqrt{m} \), then \(\Sigma(S) = \mathbb{Z}_m \).

Theorem

All subset sums in \(\mathbb{Z}_m^* \) can be solved in \(\tilde{O}(\min(\sqrt{nm}, m^{5/4})) \) time.
Subset sums in \mathbb{Z}_m

$S \subseteq \mathbb{Z}_m$
\[\mathbb{Z}_{m,d} = \{ x : x \in \mathbb{Z}_m \text{ and } \gcd(x, m) \mid d \}. \]
Definitions

- $\mathbb{Z}_{m,d} = \{ x : x \in \mathbb{Z}_m \text{ and } \gcd(x, m)|d \}$.
- $\mathbb{Z}^*_m = \mathbb{Z}_m, 1$.
Definitions

• $\mathbb{Z}_{m,d} = \{x : x \in \mathbb{Z}_m \text{ and } \gcd(x, m)|d\}$.
• $\mathbb{Z}^*_m = \mathbb{Z}_{m,1}$.
• $\mathbb{Z}_m = \mathbb{Z}_{m,m}$.
Definitions

\[\mathbb{Z}_{m,d} = \{ x : x \in \mathbb{Z}_m \text{ and } \gcd(x, m) \mid d \} \].

\[\mathbb{Z}^*_m = \mathbb{Z}_{m,1} \].

\[\mathbb{Z}_m = \mathbb{Z}_{m,m} \].

We define \textsc{AllSubsetSums}(S, m, d) as an algorithm that finds all subset sums of \(S \) in \(\mathbb{Z}_m \), if \(S \subseteq \mathbb{Z}_{m,d} \).
Definitions

- \(\mathbb{Z}_{m,d} = \{x : x \in \mathbb{Z}_m \text{ and } \gcd(x, m)|d\} \).
- \(\mathbb{Z}^*_m = \mathbb{Z}_{m,1} \).
- \(\mathbb{Z}_m = \mathbb{Z}_{m,m} \).

We define \(\text{ALLSUBSETSUMS}(S, m, d) \) as an algorithm that finds all subset sums of \(S \) in \(\mathbb{Z}_m \), if \(S \subseteq \mathbb{Z}_{m,d} \).

We solved the case for \(\text{ALLSUBSETSUMS}(S, m, 1) \).

\[\Sigma(S) = \text{ALLSUBSETSUMS}(S, m, m) \]
The algorithm for all subset sums in \mathbb{Z}_m

\begin{itemize}
 \item $S/p = \{s/p : s \in S, p|s\}$
 \item $S%p = \{s : s \in S, p \nmid s\}$
\end{itemize}
The algorithm for all subset sums in \mathbb{Z}_m

\[S/p = \{s/p : s \in S, p|s\} \]
\[S\%p = \{s : s \in S, p \not| s\} \]

Algorithm

\textsc{AllSubsetSums}(S, m, d):

1. $d = 1$, use the previous algorithm.
2. $p \leftarrow$ the largest prime factor of d
3. [All elements in S divisible by p]
 \[A \leftarrow \text{AllSubsetSums}(S/p, m/p, d/p) \]
4. [All elements in S not divisible by p]
 \[B \leftarrow \text{AllSubsetSums}(S\%p, m, d/p) \]
5. return $(p \cdot A) \oplus B$
Example recursion tree where $S = \mathbb{Z}_6$

\[
S = \mathbb{Z}_6
\]

\[0 \ 1 \ 2 \ 3 \ 4 \ 5\]
Example recursion tree where $S = \mathbb{Z}_6$

\[S = \mathbb{Z}_6 \]

0 1 2 3 4 5

\[p = 3, d = 6 \]
Example recursion tree where $S = \mathbb{Z}_6$

\[S = \mathbb{Z}_6 \]

0 1 2 3 4 5

\[p = 3, \; d = 6 \]

1 2 4 5

\[\%p \]
Example recursion tree where $S = \mathbb{Z}_6$

$p = 3, d = 6$

$S = \mathbb{Z}_6$

\[
\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{ccccc}
1 & 2 & 4 & 5 \\
\end{array}
\]

\[
\begin{array}{cc}
0 & 1 \\
\end{array}
\]

%p

$/p$
Example recursion tree where $S = \mathbb{Z}_6$

$p = 3, d = 6$

$p = 2, d = 2$
Example recursion tree where $S = \mathbb{Z}_6$

$p = 3, d = 6$

$p = 2, d = 2$
Example recursion tree where $S = \mathbb{Z}_6$
Example recursion tree where $S = \mathbb{Z}_6$
Example recursion tree where $S = \mathbb{Z}_6$

$S = \mathbb{Z}_6$

$p = 3, d = 6$

$p = 2, d = 2$

Divisors

$d_1 = 6$

$d_2 = 3$

$d_3 = 2$

$d_4 = 1$
Example recursion tree where $S = \mathbb{Z}_6$

$p = 3, d = 6$

$p = 2, d = 2$

Divisors

$d_1 = 6$
$d_2 = 3$
$d_3 = 2$
$d_4 = 1$

Total size $\sigma_1(m) = O(m \log \log m)$

$\sigma_i(m) = \sum_{d|m} d^i$.
Run time analysis: Leaves

Compute $\Sigma(S_i)$ for each i. $|S_i| = n_i$. $d_i \leq m/i$ is the ith largest divisor of m.

$$\tilde{O}\left(\sum_i \min(\sqrt{n_i}d_i, d_i^{5/4})\right)$$
$$=\tilde{O}\left(\sum_i \min(\sqrt{n_i}m/i, (m/i)^{5/4})\right)$$
$$=\tilde{O}(\min(\sqrt{nm}, m^{5/4}))$$
Run time analysis: Internal nodes

- There are $O(\log m)$ levels.
- Each level, the time spent on \oplus is
 $\tilde{O}(\sum_{d|m} d) = \tilde{O}(\sigma_1(m)) = \tilde{O}(m)$.
- The total running time over internal nodes are $\tilde{O}(m)$.
Theorem

All subset sums in \mathbb{Z}_m can be solved in $\tilde{O}(\min(\sqrt{nm}, m^{5/4}))$.
Open Problems
Is there a deterministic $\tilde{O}(t)$ time algorithm for the subset sum problem matching its conditional lower bound?
Let $k = |\Sigma(S) \cap [t]|$. Assume $k \ll t$.

- Known: subset sum in $O(nk)$ time use Bellman’s DP algorithm.
- Can we obtain an algorithm with $\tilde{O}(\sqrt{nk})$ running time?
Open Problems: Covering \mathbb{Z}_m by segments of length ℓ

Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_m.

Lower Bound:

Upper Bound:

Theorem ([Chen, Shparlinski & 2018])

• $f(m, \ell) = O(m)$ if m is prime.

• $f(m, \ell) = o(m)$.

Theorem ([Koiliaris & 2019])

Conjecture:

$f(m, \ell) = O(m \log m \log \log m)$.
Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_m.

Lower Bound: $f(m, \ell) \geq \left\lceil \frac{m}{\ell} \right\rceil$
Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_m.

Lower Bound: $f(m, \ell) \geq \lceil \frac{m}{\ell} \rceil$

Upper Bound:

Theorem ([Chen, Shparlinski & Winterhof ‘13])

- $f(m, \ell) = O\left(\frac{m}{\ell}\right)$ if m is prime.
- $f(m, \ell) = \frac{m^{1+o(1)}}{\sqrt{\ell}}$.
Let \(f(m, \ell) \) be the minimum number of segments of length \(\ell \) required to cover \(\mathbb{Z}_m \).

Lower Bound: \(f(m, \ell) \geq \left\lceil \frac{m}{\ell} \right\rceil \)

Upper Bound:

Theorem ([Chen, Shparlinski & Winterhof ‘13])

- \(f(m, \ell) = O\left(\frac{m}{\ell}\right) \) if \(m \) is prime.
- \(f(m, \ell) = \frac{m^{1+o(1)}}{\sqrt{\ell}} \).

Theorem ([Koiliaris & Xu ‘17])

\[
f(m, \ell) = \sigma_0(m) + O\left(\sigma_1(m) \log m / \ell\right) = \frac{m^{1+o(1)}}{\ell}
\]
Let $f(m, \ell)$ be the minimum number of segments of length ℓ required to cover \mathbb{Z}_m.

Lower Bound: $f(m, \ell) \geq \left\lceil \frac{m}{\ell} \right\rceil$

Upper Bound:

Theorem ([Chen, Shparlinski & Winterhof ‘13])

- $f(m, \ell) = O\left(\frac{m}{\ell}\right)$ if m is prime.
- $f(m, \ell) = \frac{m^{1+o(1)}}{\sqrt{\ell}}$.

Theorem ([Koiliaris & Xu ‘17])

$f(m, \ell) = \sigma_0(m) + O(\sigma_1(m) \log m/\ell) = \frac{m^{1+o(1)}}{\ell}$

Conjecture: $f(m, \ell) = O\left(\frac{m}{\ell}\right)$
Thank you